

AJDM

ALTAMASH JOURNAL OF DENTISTRY AND MEDICINE

LETTER TO EDITOR

Deep Learning in Crown Design, Inquiring into the Details: A Letter on **AI Designed Crown Parameters**

Tooba Shabbir¹, Aimen Yaseen¹

Department of Prosthodontics, Altamash Institute of Dental Medicine, Karachi, Pakistan.

Tooth morphology, internal fit, occlusion and proximal designed crowns by dental technicians, holds significant contacts of dental crowns designed by deep learning- implications for restorative dentistry. While the based dental software: A comparative study by Cho et al. 1 methodology is commendable, certain aspects require in the Journal of Dentistry (Feb 2024). This study, which further clarification to understand the study's clinical compares AI-based deep learning software with manually relevance fully.

Citation: Shabbir, T., & Yaseen, A. Deep Learning in Crown Design, Inquiring into the Details: A Letter on AI Designed Crown Parameters. Altamash Journal of Dentistry and Medicine 2024;3(2):55-57. Received: 03rd December 2024. Revised: 29th December 2024. Accepted: 11th March 2025. Published: 12th April 2025.

This is an Open Access article distributed under the terms of the creative common Attribution-Noncommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provide the original work is properly cited.

Corresponding Author

Dr. Tooba Shabbir,

Department of Prosthodontics, Altamash Institute of Dental Medicine, Karachi, Pakistan.

toobashabbir92@gmail.com

Tooba Shabbir

The study suggested that the dental crowns designed by deep learning-based dental software showed higher root mean square and positive average values on the axial surface compared to the reference design (technicianbased). Understanding clinical the implications of these geometric parameters would be crucial for the adoption of this system by dental practitioners. Additionally, the patient comfort and crown longevity could be influenced by the variations in occlusal and proximal contact intensities across the group. Previous studies have shown that digitally designed crown methods have an impact on the would appreciate further elaboration from authors on the additional gap of 50 μ m after they have given a 40 μ m gap and on how this specific size was determined.

While the study provides valuable insights into crown design, aspects of cusp angle measurements in Fig. 1 remain unclear. Although the selection of functional cusps was well explained, clarification on consistent plane identification across tooth morphologies is needed. Additionally, it would be helpful to know if variations in cusp heights or anatomical landmarks influenced angle

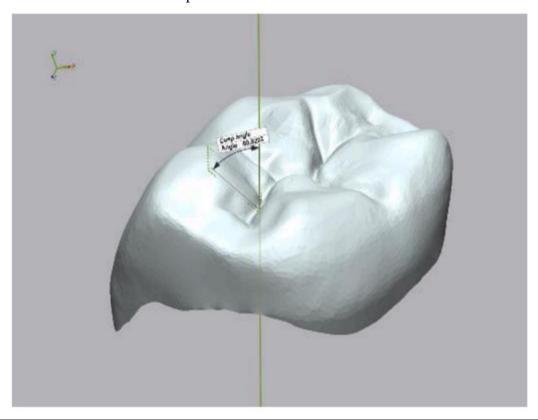


Figure.1: Evaluation of cusp angle of designed crown. The angle was measured between the cusp plane and longitudinal tooth axis vector

fit and functionality of restorations.² Further research should be warranted to explore the effectiveness of the current software programs in clinical settings.

While in the study the crown's marginal gap was designed as cited in the literature, ^{3,4,5} I

measurements, particularly when comparing crowns fabricated by different methods. Further details on these points would enhance understanding of the geometric evaluations.

In conclusion, the previous author's and the team's research highlights the significant

Tooba Shabbir

potential of AI in enhancing digital dental workflows and restorative dentistry, demonstrating its ability to boost productivity without compromising therapeutic outcomes.

Author Contributions

TS: Contributed to the conception and drafting of the letter, provided critical revisions for important intellectual content, and approved the final version of the manuscript. Ensured the accuracy and integrity of the work.

AY: Contributed to the conception and drafting of the letter, reviewed and critically revised the content, and approved the final version of the manuscript. Ensured the accuracy and integrity of the work.

Funding

No funding.

Institutional Ethical Board Approval Not applicable.

Informed consent

Not applicable.

Acknowledgment

We are grate full for the guidance and support from the Medical Education Department, Altamash Institute of Dental Medicine, Karachi

Availability of data and materials Not applicable.

Consent for publication

Not applicable.

Disclaimer of using AI tools

AI tools such as QuillBot and OpenAI ChatGPT-4.0 were utilized to assist with refining the text and enhancing its clarity.

However, all ideas, arguments, interpretations, and conclusions presented in this manuscript are the authors' original work. The authors take full responsibility for the accuracy, integrity, and quality of the content.

Conflict of Interest

The author reports no conflicts of interest.

REFERENCES

- 1. Cho J-H, Çakmak G, Yi Y, Yoon H-I, Yilmaz B, Schimmel M. Tooth morphology, internal fit, occlusion and proximal contacts of dental crowns designed by deep learning-based dental software: A comparative study. Journal of Dentistry. 2024;141:104830.
- 2. Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019;19(1):101.
- 3. Paul N, Raghavendra Swamy KN, Dhakshaini MR, Sowmya S, Ravi MB. Marginal and internal fit evaluation of conventional metal-ceramic versus zirconia CAD/CAM crowns. J Clin Exp Dent. 2020;12(1):e31-e7.
- 4. Heboyan A. Marginal and internal fit of fixed prosthodontic constructions: a literature review. Int J Dent Res Rev. 2019:2:21-8.
- 5. Lee S, Choi G, Choi J, et al. Effect of highspeed sintering on the marginal and internal fit of CAD/CAM-fabricated monolithic zirconia crowns. Sci Rep. 2023;13:17215.